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Abstract
Coronavirus disease-2019 (COVID-19) related to Coronavirus-2 (SARS-CoV-2) is a worldwide health concern. Despite the 
majority of patients will evolve asymptomatic or mild-moderate upper respiratory tract infections, 20% will develop severe 
disease. Based on current pathogenetic knowledge, a severe COVID-19 form is mainly a hyperinflammatory, immune-
mediated disorder, triggered by a viral infection. Due to their particular immunological features, pregnant women are 
supposed to be particularly susceptible to complicate by intracellular infections as well as immunological disturbances. As 
an example, immune-thrombosis has been identified as a common immune-mediated and pathogenic phenomenon both 
in COVID-19, in obstetric diseases and in COVID-19 pregnant women. According to extensive published clinical data, 
is rationale to expect an interference with the normal development of pregnancy in selected SARS-CoV-2-infected cases, 
mainly during third trimester.
This manuscript provides insights of research to elucidate the potential harmful responses to SARS-CoV-2 and /or other 
coronavirus infections, as well as bidirectional interactions between COVID-19 and pregnancy to improve their respective 
management.
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Abbreviations
ACE-2  Angiotensin-converting enzyme-2
ADE  Antibody dependent enhancement
ADRS  Acute distress respiratory syndrome
Ang  Angiotensin
APC  Antigen-presenting cells
aPL  Antiphospholipid antibodies

BNP  B‐type natriuretic peptide
MAC  Membrane attack complex (C5-9)
COVID-19  Coronavirus disease 2019
DAF  Decay-accelerating factor
HLA  Human leucocyte antigen
HELLP  Hemolysis, elevated liver enzymes, low-

platelet count
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HPS  Haemophagocytic syndrome
IFNγ  Interferon gamma
IL  Interleukin
MHC-II  Major histocompatibility type-II
MAS  Macrophage activation syndrome
MBL  Mannose binding lectin
MERS-CoV  Middle East Respiratory Syndrome 

Coronavirus
NF-kβ  Nuclear Factor-Kβ
NT‐proBNP  N‐terminal fragment of B‐type natriuretic 

peptide
NK  Natural killer cells
uNK  Uterine natural killer cells
PE  Preeclampsia
PLGF  Placental growth factor
PRR  Pattern recognition receptors
RA  Rheumatoid arthritis
RAS  Renin-angiotensin aldosterone system
SARS-CoV-2  Severe Acute Respiratory Syndrome 

Coronavirus-2
sENG  Soluble endoglin
sFlt-1  Soluble fms-like tyrosine kinase -1
SLE  Systemic Lupus Erythematosus
TLR  Toll-Like Receptor
TNF-α  Tumour necrosis factor-alpha
TRAASVIR  Thrombotic Risk Associated with 

Antiphospholipid Syndrome after Viral 
infection

TGF-β  Transforming growth factor-beta
Tregs  Regulatory T-cells
VEGF  Vascular endothelial growth factor

Introduction

The coronavirus disease 2019 (COVID-19) caused by the 
Severe Acute Respiratory Syndrome coronavirus 2 (SARS-
CoV-2), was first described as an epidemic in China (Wuhan, 
Hubei province) in December 2019 [1]. Only 3 months later, 
the World Health Organization (WHO) declared the out-
break a global pandemic [2] and a public health emergency 
of international concern due to its highly contagious nature, 
and its morbidity and mortality rates, which could rise up 
to 3–4% [2, 3].

SARS-CoV-2 is the seventh and the larger type of 
enveloped simple strained RNA coronavirus species that 
has been demonstrated to be able to infect humans [4]. 
The Severe Acute Respiratory Syndrome coronavirus 1 
(SARS-CoV-1) and the Middle East respiratory syndrome 
coronavirus (MERS-CoV) are two zoonotic coronaviruses 
that were responsible for epidemic outbreaks with a great 
local impact in 2002 in China, and in 2012 in Saudi Ara-
bia, respectively [5]. Their global impact, however, was 

relatively low. COVID-19, by contrast, has spread rapidly 
worldwide, becoming a global health threat. A low rate of 
previously exposed individuals in different communities, 
and the antigenic diversity among coronaviruses, could 
explain the explosive COVID-19 outbreak [6]. Researchers 
have struggled to understand the diversity in the molecular 
pathways of the human hosts´ immune system responses to 
SARS-CoV-2 [5–7].

SARS-CoV-2 infection has a triggering role of the 
immune system. For this reason, pregnant women are of-
special interest, due to their unique immunological tempo-
rary features. This manuscript summarizes existing literature 
of the molecular mechanisms that may be underlying in the 
obstetric manifestations of pregnant women infected with 
SARS-CoV-1, MERS-CoV or SARS-CoV-2.

COVID‑19: an immunological disorder 
underlying a clinical disease

Like in SARS-CoV-1 and MERS-CoV, COVID-19 features 
a range in symptoms from: asymptomatic or mild upper res-
piratory tract infections (80%); through flu-like syndromes to 
systemic inflammatory responses, undergoing more compli-
cated forms of the disease, like severe bilateral pneumonia 
(15%); to Severe Acute Respiratory Syndrome (SARS) and/
or multisystemic involvement (5%) requiring admission to 
intensive care units (ICU) for continuous and invasive sup-
port [8, 9]. Adults, specifically older men with comorbidi-
ties such as obesity, high blood pressure, cardiovascular or 
chronic lung diseases, are more likely to suffer severe life-
threatening forms of COVID-19, that eventually lead them 
to death [8, 9].

A five-stage model has been proposed to explain the clini-
cal spectrum of COVID-19 disease. These stages correlate 
with a direct viral effect to triggered responses of both the 
innate and adaptive immune systems [1, 9, 10]. The different 
stages are represented in Fig. 1. 

Incubation and early infection. Stage 0 and Stage 1

SARS-CoV-2 infection is transmitted person-to-person, 
airborne or via direct contact, nasal and oropharyngeal 
mucosa being the main entrance path of the virus into the 
human host. The mechanism of SARS-CoV-2 that makes 
host cell entry possible, is the Spike protein (S protein) 
on the envelope that binds to a cell membrane receptor, 
angiotensin converting enzyme (ACE) homolog 2 (ACE2), 
which is a part of the renin–angiotensin–aldosterone sys-
tem (RAS). The S protein is cleaved into S1 and S2 by 
a human cell-derived protease (proteolytic enzyme). S1 
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binds to its receptor, ACE2. The other fragment, S2, is 
cleaved by transmembrane protease, serine 2 (TMPRSS2), 
a human cell surface serine protease, resulting in mem-
brane fusion [11, 12]. SARS-CoV-2, thusly, infects ACE2 
cells, which include mainly oral mucosa, lungs, alveoli, 
kidney, liver, intestinal and all endothelial cells [12, 13]. 
After entering the cells, the viral RNA genome is released 
into the cytoplasm and is translated into polyproteins and 
structural proteins, and then, the viral genome begins to 
replicate [14]. The mature virion enters the endosome and 
interacts with toll-like receptors (TLR) from the immune 
cells to stimulate downstream inflammatory and clot 
pathways. Despite sharing almost 70% of the amino acid 
sequences of SARS-CoV-1, and having the same func-
tional receptor (ACE2), SARS-CoV-2 is more contagious 
than SARS-CoV-1 and MERS-CoV [5, 15]. It has two 
main genomic polymorphisms; the newest and the most 
predominant one, L type (∼ 70%) is meant to be more 
aggressive, and spreads quicker than others [14, 16, 17]. 
One possible explanation is that in SARS-CoV-2 infection, 
the IFN-I type response, -a protective pathway through 
infected cells usually modulate innate immune responses, 
promoting balanced antigen presentation and natural killer 
cell functions, while reducing proinflammatory cytokine 
production- [18], is suppressed, and therefore viruses rap-
idly replicate [7, 19].

Primary inflammatory responses. Infection/
pulmonary phase. Stage 2

These primary inflammatory responses are mainly driven 
by active viral replication. The cellular effectors of the 
innate immune system are mainly macrophages and neu-
trophils that massively respond by producing reactive oxy-
gen species (ROS), viral antigenic peptides, and specific 
tissue matrix metalloprotease (MMP). The core activity of 
innate immune system in this stage, is the release of pro-
inflammatory cytokines like pro-IL-1β [20] that is cleaved 
by caspase-1 and converted into active mature IL-1β. This 
is the very first mediator of lung inflammation and the 
ensuing epithelial and endothelial cell apoptosis, vascular 
leakage and tissue damage [8, 20]. After the innate sys-
tem, the adaptive immune system rapidly comes onto the 
scene through antigen-dependent lymphocyte activation by 
antigen presenting cells (APC) bearing viral antigenic pep-
tides on human leukocyte antigens (HLA) molecules. Some 
gene polymorphisms, i.e., mannose-binding lectin (MBL) 
expressed in the virus that determine pattern recognition 
receptors (PRR), could define the different responses in the 
host [21]. The APC-viral antigen complexes are recognized 
by virus-specific cytotoxic T lymphocytes (CTLs), which are 
mediated by virus-specific B and T cells (CD8 + , CD4 +), 
secreting at different times typical of viral-induced patterns 
of neutralizing antibodies (IgM and IgG) [7, 21]. Besides 
these inflammatory responses, a persistent waste of active 
macrophages, neutrophils and lymphocytes still remain, 

Fig. 1  Five stage model to explain clinical and immunological spectrum of COVID-19 disease
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boosting pyroptosis and apoptosis of the infected cells. The 
massive viral entry causes ACE2 downregulation and shed-
ding, reducing Ang-1–7 and Ang-1–9 synthesis [22], caus-
ing dysfunction of the RAS, and enhances vasoconstriction, 
inflammation and vascular permeability [20, 22, 23].

Most patients can tolerate this primary inflammatory 
response with a positive clinical outcome after viral load 

reduction or even viral clearance. The cessation of inflam-
mation and further viral replication seems to be due to the 
generation of Th2-adaptive immune response, through neu-
tralizing antibodies (Nab), which usually limits pulmonary 
phase [24, 25].

Fig. 2  SARS-CoV 2 infection in pregnancy: hypothetical pathogenic 
pathways in endothelial cells. The figure represents all molecular 
pathogenic pathways tha may happen when SARS-CoV-2 infects 
endothelial cells in context of pregnancy, including the fetal-maternal 
interface endothelial cells. The mechanism of SARS-CoV-2 human 
cell entry is possible as the Spike protein (S protein) on the enve-
lope binds to the cell membrane glycoprotein angiotensin converting 
enzyme (ACE) homolog 2 (ACE2), which is involved in the renin–
angiotensin–aldosterone system (RAS). The S protein is cleaved 
into S1 and S2, which enhance ACE2 and TMPRSS2, respectively. 
The binding induces competitive inhibition, causing ACE2 down-
regulation and shedding, reducing Ang- 1–7 synthesis while shift-
ing to an increase of ACE1 activity, increasing Ang II and turning 
to vasoconstriction, inflammation and vascular permeability. After 
entering the cells, the viral RNA genome is released into the cyto-
plasm and is translated into polyproteins and structural proteins, after 
which the viral genome begins to replicate.The mature virion enters 
the endosome and interacts with toll-like receptors (TLR) from the 
immune cells to stimulate downstream inflammatory and clot path-
ways. The viral nuclear integration could induce protein expression in 
the infected cells that would contribute to enhance the inflammatory 
response and cell damage both directly and indirectly, increasing pro-
coagulant tissue factor and inflammatory cell adhesion and attraction 
proteins (E-selectine, ICAM,VCAM), as well as reducing HO/CO or 
NOs that would contribute to vasocontriction, tissular hypoxia and 
underperfusion. The primarly inflammatory responses are driven by 
the innate immune system activation consisting in a massive invasion 

of neutrophils, monocytes and macrophages that release different pro-
inflammatory cytokines and other proteins and molecules responsible 
to induce cell apoptosis and pyroptosis, leading to a different grade 
of tissue and organ damage. Simultaneoulsy, adaptive immune system 
comes on the scene through antigen-dependent lymphocyte activation 
by antigen presenting cells (APC) bearing viral antigenic peptides on 
human leukocyte antigens (HLA) molecules. APC-viral antigen com-
plexes are recognized by virus-specific B and T cells (mainly CD8+) 
secreting, at different times, Th1 profile cytokines, which, reinforce 
previous inflammation, as well as Th2 adaptive humoral response by 
typical viral- induced pattern of neutralizing antibodies (Nab) IgM 
and IgG. In some cases, the appearance of Nab not only cannot limit 
viral replication, but trigger an hyperimmune response, owing to anti-
body dependent enhancement inflammatory pathways (ADE) that 
perpetuate responses from macrophages and Th1-lymphocyte, releas-
ing a cytokine storm composed by IFN-α, IFN-γ, IL-1β, IL-2,IL-6, 
IL-12, IL-8, TNF-α etc. and more pro-inflammatory proteins like 
monocyte chemoattractant protein 1 (MCP1), macrophage inflam-
matory protein 1 alpha (MIP-1α), or MMP(tissue matrix metallopro-
tease). Additionally, these secondary inflammatory responses include 
antibody-dependent cell-mediated cytotoxicity, Ag-Ab immuncom-
plexes-mediated inflammatory pathways, including transient aPL-, 
and complement pathway hyperactivation that contributes to increas-
ing tissue damage and hypoxia by releasing antiagiogenic factors 
(sFLT-1, sENG) and inducing platelet aggregation and clot cascade 
hiperactivation leading to thrombotic events
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Secondary inflammatory responses. 
Hyperinflammatory phase. Stage 3

In some cases, the appearance of Nab not only limits viral 
replication, but can also trigger a hyperimmune response. 
Antibody-dependent cellular cytotoxicity (ADCC) and com-
plement pathway hyperactivation, contribute to an increase 
in tissue injury. In addition, both platelet and clot cascade 
hyperactivation give way to thrombotic events. The main 
underlying known mechanism, antibody-dependent enhance-
ment (ADE), is able to up-modulate the immune response, 
regardless of virus triggering [25, 26]. ADE perpetuates 
inflammatory responses from macrophages and Th1-lym-
phocyte by releasing a cytokine storm, composed of IFN-α, 
IFN-γ, IL-1β, IL-2,IL-6, IL-12, IL-18, IL-33, protein 10, 
monocyte chemoattractant protein 1 (MCP1), macrophage 
inflammatory protein 1 alpha (MIP-1α), and tumour necro-
sis factor-alpha (TNF-α), among others [9, 10, 27]. This 
hyperinflammatory state can cause the host to suffer from a 
disseminated intravascular coagulation (DIC), in context of 
multi-organic failure that, in refractory catastrophic situa-
tions, result eventually in death [28].

Immune protection. Post infectious phase. Stage 4

The majority of infected patients are able to limit the situa-
tion and to overcome the disease. Thus, the underlying pro-
inflammatory and clot pathway hyperactivation gradually 
returns to basal status. Clinically, this stage lasts 2–6 weeks, 
with some residual symptoms. Preliminary data suggest 
that at least 15–20% of cases with pulmonary or systemic 
involvement will have residual lesions, i.e., pulmonary fibro-
sis or heart conditions. Some dynamic models of SARS-
CoV-2 assume that infection could induce immunity to 
reinfection for at least 1 year; although, the protective role 
of the immune response and the timescale of the protec-
tion, still remain unclear [29, 30]. Relapsing severe forms 
of COVID-19 patients have been reported, pointing out 
the question if the presence of naturally acquired antibod-
ies against SARS-CoV-2, -or exposure to other previously 
coronaviruses- would bestow cross-protection or would be a 
harmful trigger through ADE in further contacts [31].

Considering the above, COVID-19 creates a great chal-
lenge to the immune system. The newness of SARS-CoV-2 
makes all populations immunologically susceptible. Preg-
nant women, because of their particular and temporary 
immunological features, deserve special attention. The 
Fig. 2 represents all the hypothetical pathogenic pathways 
that could operate in a COVID-19 affected pregnancy. 

Covid‑19 and pregnancy

Immunological and physiological characteristics 
of pregnancy

Rather than immunosuppression, a successful pregnancy 
requires a robust, dynamic and responsive immune system 
[32]. The mother has to tolerate the implantation of a semi-
allogeneic or allogeneic foetus in the womb, while preserv-
ing the ability for protection against microbial challenges. A 
precise timing of local and systemic immunological events 
occurs throughout pregnancy [33].

At first, the embryo implantation and placentation benefit 
from a pro-inflammatory state; after that, an anti-inflam-
matory state permits cell clearance, angiogenesis, and fetal 
growth; and finally, a second pro-inflammatory state pro-
gressively prepares for the initiation of parturition in the 
third trimester until birth [32, 33]. Overall, the events that 
facilitate immune tolerance, are led by hormonal inputs, 
i.e., human chorionic gonadotropin (hCG) and progester-
one [34]. These events include indoleamine-2,3-dioxygenase 
(IDO) secretion by the placental trophoblast, the monocyte-
macrophages activation in decidua and the reduction of 
tryptophan catabolism [35]. Simultaneously, HLA-medi-
ated recognition promotes the endogenous STAT5ab sig-
nalling across multiple T cell subsets, including Treg cells 
(CD25 + FoxP3 +), naive and memory CD4 + and CD8 + T 
cells, and γδ T cells.

Treg cells are crucial effectors, mostly but not only, in 
the peri-implantation period down-regulating the T-cell 
aggressive responses. Uterine NK (uNK) cells, which are 
non-cytotoxic but proangiogenic, accumulate in the decidua 
(15% of all cell types), while decreasing in the maternal cir-
culation [36, 37]. They are activated by KIR receptors [38, 
39]. The relationship between different maternal KIR geno-
types and haplotypes and fetal HLA haplotypes, are crucial 
to tolerate the semiallogeneic fetus. On the other hand, the 
maternal innate immune system, through peripheral natural 
killer (pNK) cells, as well as monocytes and macrophages, 
will recognize and phagocytose eventual pathogens as 
a protective mechanism to systemic infections [40, 41]. 
Simultaneously, the systemic adaptive immune responses 
are down-regulated but keeps humoral Th2/cellular Th1 bal-
anced, according to pro-inflammatory or anti-inflammatory 
pregnancy demands [33].

Besides the immunological aspects, physiologic mater-
nal adaptations determine and increase susceptibility and 
severity of microbial infection throughout pregnancy [42, 
43]. Oxygen consumption increases in pregnant women. The 
physiologic diaphragm elevation that prompts a restriction in 
lung expansion, as well as the hormone induced oedema of 
upper respiratory tract mucosa, render them highly sensitive 



 Archives of Gynecology and Obstetrics

1 3

to hypoxia and particularly vulnerable to respiratory patho-
gens [43].

Given this scenario, it is rational to think that any event, 
such as a highly immunogenic viral infection like SARS-
CoV-2, could interrupt the normal course of pregnancy. 
Some studies point to the involvement of COVID‐19 in a 
deregulation of the Treg/Th17 cell ratio toward an increase 
in Th17 cells, resulting in uncontrolled systemic inflamma-
tion. Thus, in SARS‐CoV‐2‐infected pregnant women, Treg/
Th17 cell imbalance might be potentially associated with 
adverse pregnancy outcomes such as pregnancy loss, pre-
term birth, and PE [44]. Different outcomes can be expected 
according to individual immune susceptibility and the gesta-
tional age at the onset of infection, which might bidirection-
ally determine both obstetric complications and duration, 
and/or severity of the infectious disease.

Previous and current coronavirus infection 
experience in pregnant women

SARS-CoV-2 infection in pregnant women could entail 
obstetric complications, and pregnancy can influence the 
course of the COVID-19 disease in the mother. Obstetric 
complications in COVID-19 could be induced by both direct 
viral effect (ACE2 receptors, viral replication) and the sub-
sequent hyperinflammatory responses. There is current evi-
dence suggesting that pregnant women have been specially 
affected by viral infections and suffer greater virus-associ-
ated morbidity and mortality than non-pregnant women [45].

Pneumonia arising from any infectious aetiology is an 
important cause of morbidity and mortality among pregnant 
women [46]. Classically, pneumonia was one of the most 
common causes of indirect maternal death [46, 47]. Mor-
tality rate of the 1918 influenza pandemic was 26% of the 
general population, but 37% among pregnant women [48]. 
On the basis of data from twentieth century, approximately 
25% of pregnant women with all-cause pneumonia will need 
to be hospitalized in intensive care units (ICU) and will 
require ventilatory support [47–50]. During the pandemic 
H1N1 influenza virus in 2009 pregnant women were, more 
than four times, more likely to be admitted to hospital than 
the general population [51].

Data from previous experiences in the SARS-CoV-1 and 
MERS-CoV epidemics, showed around 50% of pregnant 
women who developed SARS were admitted to the ICU, 
and around 33% of them required mechanical ventilation 
with a mortality rate as high as 25% [52]. According to 
data from the first studies of COVID-19 in China amongst 
pregnant women, the clinical characteristics of pneumonia 
were similar to those of non-pregnant adult patients, with a 
prevalence of severe cases of 1–8% and a mortality rate of 
1% [53, 54]. Certainly, current data show similar prevalence 

of mild and severe COVID-19 cases among pregnant women 
compared to general population. However, they advertise 
that pregnant women should be considered as a high risk 
group of pulmonary status worsening, mainly those cases 
with added comorbidities (asthma, obesity, diabetes) and 
during third trimester [55–59].

Regarding obstetric outcomes, previous studies showed 
that SARS-CoV-1 and MERS-CoV infections caused a 
higher incidence of maternal morbidity and poor obstetric 
outcomes such as preterm birth, IUGR, intrauterine death or 
neonatal death [60–63]. The first studies on perinatal mor-
bidity and mortality and COVID-19 infection, reveal that all 
pregnant women, but mainly those in the third trimester, may 
be particularly vulnerable to suffer obstetric complications 
such as foetal loss, stillbirth, intrauterine growth restriction 
(IUGR) and preterm delivery [54, 63].These statements, 
however, should be taken with caution, as they come from a 
series of low numbered cases and retrospective case–control 
studies published mainly in China during the first wave of 
the pandemic.

One of the first systematic review and meta-analysis 
published on pregnancy outcomes in mothers infected with 
coronavirus (SARS-CoV-1, MERS-CoV and SARS-CoV-2), 
preterm birth was the most common adverse pregnancy out-
come [64]. Foetal loss, pre-eclampsia (PE), caesarean sec-
tion and perinatal death (7–11%) were also more common, 
than in unaffected pregnancies. The mode of delivery in 
the majority of cases with pneumonia was caesarean sec-
tion (~ 80%) [28, 64]. In that study, the authors warn that 
adverse outcomes when focusing on COVID-19 could be 
overestimated as a result of either a limited follow-up peri-
ods to recruit data, or misdiagnosis or iatrogenic acts due to 
the lack of experience in the clinical features of the novel 
virus [64]. A possible overestimation of the risk magnitude 
of obstetric complications in COVID-19 pregnancies could 
be partially related to the bias and the relative low level of 
evidence of first case reports and case series, published by 
a stressed scientific community, committed to publish clear 
data to provide knowledge to approach the overwhelming 
outbreak period of the pandemic. Since then, much data 
regarding the impact of COVID-19 in pregnancy has been 
accumulated [58, 65–67]. To date, data available about the 
consequences of COVID-19 in pregnancy outcomes state 
that preterm delivery and fetal distress are the main adverse 
outcomes observed in symptomatic COVID-19 pregnancies 
in the third trimester and at delivery [59, 65–67]. The effects 
of SARS-CoV-2 in the first and second trimesters deserve 
specific studies to elucidate the controbution of the infection 
in complications such miscarriage, preeclampsia or IUGR 
showing variable and inconclusive incidence among pub-
lished studies [65, 67–71].
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Hypothesis on the influence of SARS‑CoV‑2 infection 
in obstetric immune pathways

First and third trimester

A state of mild systemic activation of the innate immune 
system and inflammation exists in the first but especially in 
the third trimester [72]. In these periods, an increased num-
ber of monocytes and granulocytes are found in maternal 
blood, releasing inflammatory cytokines, i.e., IL-8, TNF-
a, IL-6, by dendritic cells (DC), compared to non-pregnant 
women [72, 73]. Cytokine storm has been documented as a 
key pathogenic immune mechanism in SARS-CoV-2 infec-
tion. The infection, therefore, could induce a more severe 
inflammatory state in pregnant women, that might explain 
an eventual higher incidence of first and third trimester out-
comes like miscarriage [65, 74, 75], and preterm deliveries 
[76].

During the period from the third trimester to delivery, 
COVID-19 leads to an increased incidence of premature rop-
ture of membranes, fetal distress and preterm labour [67, 
76]. The higher incidence of these complications might be 
due both the need for reduce the mechanical limitation of 
thoracic expansion, and to improve maternal oxygenation, 
as well as the inflammatory response of the maternal mul-
tiorganic disease [56, 57, 65, 67].

Second trimester

During the second trimester, the low-level inflammatory 
state combined with skewing towards humoral immunity is 
thought to allow foetal growth. Th1 cell-mediated immunity 
is, somewhat compromised, increasing the susceptibility of 
pregnant women to viral and intracellular bacterial infec-
tions [32, 77]. This scenario allows researchers to speculate 
on the effect of SARS-CoV-2 in shifting immune responses 
towards a rejection of the fetal-placental unit or even foetal 
compromise, resulting in variable manifestations of pla-
cental inflammation related diseases such as IUGR and PE 
[78–80], or foetal demise and foetal structural defects [81, 
82]. The mother’s response to infection tends to promote the 
fetus inflammatory response, which is defined as the fetal 
inflammatory response syndrome (FIRS) [83], characterized 
by high levels of inflammatory cytokines in placenta. These 
cytokines have been shown to affect the central nervous sys-
tem and circulatory system and tend to cause fetal abnormal 
morphology in animal models, including ventricular expan-
sion and bleeding [84, 85]. Even in human studies, a main-
tained hyperinflammatory environment during pregnancy 
would have a deleterious effect mostly on the neurodevelop-
ment of the fetus, leading to potential neuronal dysfunctions 
in their postnatal life [86].

Despite SARS-CoV-2 virions have been detected in 
placental and foetal membranes [87, 88], the harm of the 
foetus in a COVID-19 pregnant mother is not expected to 
be exerted by a direct action of the virus, as vertical trans-
mission in the amniotic fluid has not been clearly proved 
[54, 89–92]. A rang of 2% to 4% of pooled proportion of 
SARS-CoV-2 viral RNA test in neonatal nasopharyngeal 
swab resulted positive in recent published studies, even after 
having ensured no physical contact between the mother and 
the newborn. Despite the fact that not only nasopharyngeal 
swabs but umbilical cord, urine and rectal samples have 
tested positive suggesting a possible vertical transmission, 
no evidence of the presence of the virus in the amniotic fluid 
has been reported [92, 93].

An indirect foetal harm by immune responses induced 
by SARS-CoV-2 should not be excluded. For many viral 
diseases (SARS-CoV-1, MERS, influenza virus, Ebola 
virus, and Zika virus) it is well known that viral RNA can be 
detected in patients long after the disappearance of the virus. 
The immune system can neutralise viruses by lysing their 
envelope, aggregating virus particles; thus, the presence of 
nucleic acid alone, cannot be used to define viral shedding 
or infective potential, but could induce antibodies to be able 
to neutralise or enhance ADE [94]. ADE responses upregu-
lating the immune-mediated cytokine storm described in 
severe and relapsing COVID-19 cases, have been similarly 
described in other positive ssRNA viruses, like flaviviruses 
such as Zika virus [95]. Recently, data of the human plasma 
with subneutralising antibody levels against flaviviruses with 
capacity to promote Zika virus pathogenicity in adult mice 
and foetal demise during pregnancy were reported [31, 96]. 
For these reasons, both foetuses and newborns of SARS-
CoV-2-infected mothers, should be accurately evaluated.

Immune‑thrombosis in COVID‑19 pregnancies

Immune-thrombotic mechanisms operate as the basis in 
almost all placental-related complications such as recur-
rent miscarriage (RM), abruptio placentae, placental insuf-
ficiency or foetal death. Pregnancy is a physiologically 
hypercoagulable state [97] with raised coagulation factors, 
including fibrinogen and FVIII, and markers of clot activa-
tion, i.e., D-dimer and decreased fibrinolytic proteins, such 
as protein S [97–99]. These particular conditions could be 
aggravated in an infectious context. Severe SARS-CoV-2 
infection induces immune-mediated mechanisms, hyperco-
agulability and up-regulation of the complement pathway. 
Coagulopathy results from concurrent activation of the clot 
and fibrinolytic cascades, causing both thrombus and clot-
ting factor consumption. Thus, manifestations can be either 
thrombotic or haemorrhagic. Venous and arterial thrombosis 
have been reported in both COVID-19 patients [100–102], 
and pregnant women [103]. Coagulopathy complications, 
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thrombosis apart, have been reported similarly in pregnant 
women and in the general population [104]; however, preg-
nant women deserve closer surveillance since they are more 
likely to suffer from thrombotic-haemorrhagic catastrophic 
events [97, 98].

A quite low mortality rate has been reported since the 
COVID-19 outbreak [56, 65, 67, 105, 106]. Along with 
specific case series of maternal deaths [107, 108], a sys-
tematic review on maternal mortality summarizes that the 
acute respiratory distress syndrome (ARDS) and severity 
of pneumonia were considered as the leading causes of all 
maternal mortalities [58]. Except for some cases of mater-
nal deaths related to thrombotic complications [58, 109], 
scarce publications has delved into a potencial implication of 
haemorragic o thrombotic events implicated in the referred 
COVID-19 maternal deaths. Microvascular thrombosis in 
the pulmonary system, -leaded by immunothrombosis phe-
nomena-, and immobility due to hospitalization-associated 
venous thromboembolism are the two distinct mechanisms 
that could affect in those cases with a worst evolution of 
COVID-19 pregnant women [110–112]. Inflammation tar-
geting, clot path way involvement and thrombosis should be 
investigated further in all maternal death cases [106, 110, 
113].

Learning from placenta histology

Despite being considerably scarce, valuable information 
comes from the histological analysis of the placentas of 
SARS-CoV-1 and SARS-CoV-2-infected mothers [114–116] 
that contributes to the understanding of the viral patho-
genicity during pregnancy. In general terms, placentas of 
SARS-CoV-1 pregnancies infected during the first trimester 
of pregnancy were found to be normal. By contrast, those 
infected in the second or third trimester were clearly abnor-
mal. Beyond acute or chronic signs of amniotic inflamma-
tion, the prevalent histopathological findings were marked 
signs of abnormal maternal vessels showing subchorionic 
and intervillous fibrin deposits, as well as extensive foetal 
thrombotic vasculopathy with areas of avascular chorionic 
villa, suggesting vascular malperfusion.A recent publica-
tion related to placental pathology of five full-term births to 
COVID-19 patients shows an histology indicative of fetal 
vascular malperfusion characterized by focal avascular villi 
and thrombi in larger fetal vessels [113].

Interestingly, villitis, the microscopic finding of inflam-
mation of the chorionic villi that is the histologic hallmark 
of many maternal haematogenous infections transmitted 
through the placenta to the foetus [117], was not identified 
in these placentas. Overall, thrombotic and/or microangio-
phatic traits seemed to prevail over chorioamnionitic ones. 
Only in one reported case of second trimester miscarriage 
in a pregnant woman with SARS-CoV-2 infection [118], 

placental studies demonstrated mixed inflammatory infil-
trates and unspecific increased intervillous fibrin deposition 
and funisitis; however, no bacteria or fungi were identified 
in placental PCR or cultures.

Histological findings in SARS-CoV-1 and SARS-CoV-2 
placentae share some characteristics with those of preg-
nant women with obstetric antiphospholipid syndrome 
(OAPS) [119]. Therefore, COVID-19 infection and the 
presence of aPL might have a synergistic effect, inducing 
both inflammation and thrombosis. Antiphospholipid syn-
drome (APS) is considered a prothrombotic disorder [120]; 
however, in OAPS subset, rather than thrombotic, the main 
pathogenic mechanisms triggered by aPL are those related 
with inflammation [79–81]. Moreover, viral infections 
as a trigger to synthesize aPL has already been reported 
[121, 122]. Acute viral infections can be frequent triggers 
of catastrophic antiphospholipid syndrome (CAPS) (24%) 
[123, 124], an infrequent and severe clinical subset of APS 
presenting in ≤ 1% of cases. Only one paper has been pub-
lished regarding aPL in the context of severe COVID-19 
disease [125]. Similarly, other cases have also been recruited 
(Esteve-Valverde E, Alijotas-Reig J: unpublished results). 
Some argue that transient non-pro-thrombotic antibodies can 
arise in patients with critical illness and various infections. It 
is difficult to dismiss their potential harmful effect in severe 
medical conditions, like severe COVID-19, that present 
similar characteristics as CAPS. Recently, a European Mul-
ticentre Registry endorsed by the EUROFORUM projects 
to recruit cases of COVID-19 patients with thrombosis and 
aPL positivity (COVIDAPS) has been started (Alijotas-Reig 
J: personal communication).

Complement system role

Complement role in COVID‑19

The complement system is a protein-composed mediator 
-(C1 to C9)- of the innate immune system that promotes 
inflammation, defends against bacterial infections, and often 
neutralizes infectious viruses [126]. Its classical pathway is 
triggered by Ag-Ab complexes, and its alternative pathway 
by specific surface antigens and molecules. Other activa-
tors such as coagulation factors FXa, FXIa and plasmin, 
that can cleave both C5 and C3, have been reported [127]. 
These pathways converge on a common via. The common 
pathway includes production of C3a and C5a inflammatory 
mediators, C3b-initiated pathogen opsonisation, and ends in 
formation of the C5b-9 membrane attack complex (MAC) 
that lyses targeted cells, resulting in cell death [128, 129]. 
Complement activation has polarized effects: towards pro-
tective-tolerogeneic-defender functions or life-threatening 
responses, like in autoimmune diseases such as systemic 
lupus erythematosus (SLE) or rheumatoid arthritis (RA) 
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[129]. The complement system role in the pathogenicity of 
previous coronavirus epidemic diseases has already been 
described. In SARS-CoV-1-infected mice lacking C3, thus 
unable to activate the common complement pathway, a 
less severe respiratory dysfunction was observed, as well 
as lower cytokine levels despite equal viral loads [129]. 
Similarly, in the murine model of MERS-CoV infection, 
increased levels of C5a and C5b-9 were found in sera and 
lungs of sick mice [130, 131]. When blocking C5a protein 
with specific antibodies, an improvement of lung damage 
besides lower cytokine production and viral replication 
were seen [132]. According to all these data, hyperacti-
vation of the complement system in SARS-CoV-2 infec-
tion, as a powerful inducer of the hyperinflammatory state, 
could be compellingly suggested [131, 132]. Widespread 
complement activation, with C3 deposition in lung biop-
sies and increased C5a serum levels of COVID-19 patients 
have already been reported [133]. Excessive complement 
activation is clearly recognized to be involved in diffuse 
thrombotic microangiopathy, as seen in organ dysfunction 
syndromes such as atypical haemolytic uremic syndrome 
(aHUS), thrombotic thrombocytopenic purpura (TTP) and 
CAPS [134–136]. Likewise, in other well-known hyperin-
flammatory and hyperferritinaemic disorders, -see Table 1-, 
like haemophagocytic syndrome (HPS) and macrophage 
activation syndrome (MAS), a hyperactivation of the com-
plement system has also been recognized to be essential to 
induce tissue damage [137–139]. The current similarities 
between these syndromes and the severe life-threatening 
COVID-19 forms, reinforce the role of complement hyper-
activation as one of the most harmful molecular pathways 
in the pathogenesis of the disease.

Complement role in pregnancy

Autoantibody-mediated complement pathway hyperactiva-
tion, has been widely described in several pregnancy com-
plications [140–142]. Thus, besides strategic HLA-G exposi-
tion, T cells suppression and uNK-specific activity, a tight 
regulation of complement system activation is essentially 
needed to achieve a successful tolerant environmental in the 
fetal-maternal interface [143, 144]. The specific role of C1q, 
synthesised in extravillous trophoblast, and widely distrib-
uted in human decidua, has been studied [145]. To achieve 
a simultaneous balanced control between required inflam-
mation and immune-protection against infection, tropho-
blast secrete C3a, C4a, and C5a [146, 147]. This regulation 
necessarily involves placental complement inhibitors, such 
as decay-accelerating factor (DAF) and membrane cofac-
tor protein (MCP), that are expressed throughout gesta-
tion, protecting from preterm delivery among other adverse 
events [148, 149]. The opposite scenario appears when 
uncontrolled complement activation, -conditioned by gene 
polymorphism, (mainly in sperm genes) [150, 151], ethnic-
ity, acquired mutations [152, 153], infections or presence 
of aPL [154, 155]-, determines disabling placental immune 
regulation, leading to abnormal pregnancy outcomes like 
RM, IUGR, or PE.

Preterm birth Studies in mice models of preterm birth, 
reported high C5a deposits and macrophage releasing MMP, 
collagen degradation and increased cervical distensibility 
after an administration of low-dose intravaginal endotoxin. 
These observations were reverted after progesterone treat-
ment. Activation of complement entail uterotonic properties 
that have been tested through C5a- C5aR interaction, lead-
ing to preterm birth [156]. By contrast, the labour at term is 
not mediated by inflammatory molecules and cells or com-
plement activation, but by MMP and other active products 
released from cervical fibroblasts and columnar epithelial 
cells [157].

In addition to immaturity-related risks of preterm birth, 
both inflammatory and/or infectious insults that can occur 
during pregnancy have deleterious effects on the foetus. Sev-
eral studies show a strong association between intrauterine 
inflammation or infection and the following complement 
hyperactivation, causing foetal and newborn brain abnor-
malities and neuronal injuries, respectively [158, 159]. Some 
illustrative studies in mice models demonstrated that the 
length of axons of cortical neurons of preterm mice exposed 
to C5a deposits was considerably reduced, compared with 
controls [160].

Preeclampsia Pre-eclampsia is another obstetric disorder 
where complement activation appears to play an important 

Table 1  Hyperferritinemia-related disorders

SARS-CoV-2 severe acute respiratory syndrome related to coronavi-
rus-2
COVID-19 coronavirus disease 2019
a Cluster differentiation

Adult Still’s disease
Systemic lupus erythematosus
Vasculitis
Lymphoma
Catastrophic antiphospholipid syndrome
Biological compound anti-CDa-28 treatment
Haemophagocytic syndrome
Macrophage activation syndrome
SARS-CoV-2 infection (COVID-19)
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role. Despite an open discussion on the role of circulating 
complement levels to predict obstetric outcomes [161–164], 
complement component tissue deposits have been observed 
in embryo implantation sites of pre-eclamptic mice mod-
els, and in focal or diffuse staining patterns in the placentae 
of women with PE and IUGR [165–167].The complement 
hyperactivation acts as a strong inflammatory insult, leading 
to functional deficiency of free vascular endothelial growth 
factor (VEGF) while increasing levels of soluble VEGF 
receptor 1 (sVEGFR-1, or sFlt-1), a strong anti-angiogenic 
molecule, enhancing organ underperfusion and defective 
placental development [168–170], which have been proved 
to be the origin of Preeclampsia [171–173]. A clear restora-
tion of this essential angiogenic imbalance, (reducing sFlt-1 
as well as increasing VEGF), has been observed after com-
plement inhibition treatment [169, 174].

Preeclampsia is a disease characterized by increased lev-
els of anti-angiogenic factors sensitive to hypoxia produced 
by the placenta to the detriment of angiogenic ones [172, 
173, 175]. However, the diagnostic criteria is still based 
on clinical and laboratory data, and not includes these bio-
chemical markers. Several disorders have previously proved 
to imitate PE from clinical and analytical point of view, 
including COVID-19 [176]. Recent studies have reported 
PE/Hellp factures in pregnant women with severe forms of 
COVID-19 despite showing a normal angiogenic status and 
placental perfusion [68, 71]. The role of the inflammatory 
pathways triggered by the virus should be investigated in 
these specific cases.

Recurrent miscarriage. Recurrent miscarriage in  obstetric 
antiphospholipid syndrome In previous studies, up to 20% 
of miscarriages and fetal losses not mediated by autoanti-
bodies were associated with hypocomplementemia [177]. 
According to the newest data, the main role of comple-
ment-mediated injuries in trophoblast and placenta causing 
embryo or foetal loss, is thought to be through aPL [154, 
155, 178, 179]. Murine models have widely demonstrated 
the hyperactivation of complement in both pro-inflamma-
tory and pro-thrombotic events involved in obstetric com-
plications seen in OAPS [155, 179], where the main clini-
cal outcomes are RM, foetal death, PE, premature births or 
IUGR [178, 180, 181]. Using human or animal aPL mono-
clonal antibodies, the increased foetal death and embryo 
resorption seen in transferred pregnant mice were attributed 
to hyperactivation of the classical complement pathway act-
ing as key mediators of foetal injury. Complement activa-
tion (via C3a, C5a, and MAC) cooperates not only in trig-
gering a local inflammatory process, but eventually, leading 
to placental thrombosis [141, 142, 180], through stimulus 
of the expression of tissue factor (TF) or CD142, a power-
ful activator of extrinsic clot cascade [179]. The usefulness 
of therapeutic molecules aimed to complement inactivation 

in human models reinforces the complement roles in many 
human obstetric immune-mediated diseases [182–184].

Complement pathway and its hypothesized role 
in COVID‑19 pregnancies

Considering the endothelial injury as a hallmark of 
COVID-19, SARS-CoV-2 infection during pregnancy 
could induce or even aggravate complement activation, 
involving obstetric complications like RM or PE. As pre-
viously mentioned, microangiophatic syndromes, such 
as aHUS, TTP, acute fatty liver of pregnancy (AFLP) or 
CAPS, can complicate pregnancy. All these syndromes 
share common pathogenic mechanisms like vasospasm, 
platelet activation or destruction, microvascular thrombo-
sis, endothelial cell dysfunction, and reduced tissue perfu-
sion [176]. Some of them have been identified in severe 
COVID-19 cases. Therefore we can infer that, in the con-
text of the SARS-CoV-2 pandemic, COVID-19 disease 
might be considered a potential cause of placental-related 
disorders, and even become part of the list of PE imitators 
[176], challenging physicians and specialists to be faced 
with difficult differential diagnosis see Table 2.

Role of ACE2 and RAS in COVID‑19 pregnancies

Role of ACE2 in pregnancy

RAS has a major role in regulation of vascular tone and car-
diovascular haemodinamics. RAS has two main metabolic 
axis from angiotensinogen to angiotensin I, showing oppo-
site effects: ACE1/angiotensin II (AngII) axis, and ACE2/

Table 2  Preeclampsia imitators

aPL antiphospholipid antibodies, HELLP haemolysis, elevated liver 
enzymes, low platelet count, CMV cytomegalovirus, SARS-CoV-2 
severe acute respiratory syndrome related to coronavirus-2

HELLP syndrome
Acute fatty liver of pregnancy
Systemic lupus erythematosus with nephritis
Catastrophic antiphospholipid syndrome
Renal thrombotic microangiopathy related to aPL
Systemic vasculitis
Systemic sclerosis: renal crisis
Thrombotic thrombocytopenic purpura
Atypical hemolityc uremic syndrome
Sepsis
Disseminated viral diseases, i.e. herpes virus, CMV. SARS-CoV-2
Drugs: gemcitabine; quinidine, cyclosporine A, thienopyridines
Others: necrotizing pancreatitis, pheocromocytoma, cocaine abuse, 

paroxysmal nocturnal hemoglobinuria
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angiotensin 1–7 (Ang 1–7) axis [185].While AngII can 
induce strong vasoconstriction and proinflammatory effects, 
Ang (1–7) exhibits antiproliferative, antiapoptotic, and mild 
vasodilation abilities contributing to cardiovascular protec-
tive effects, including anti-heart failure, antithrombotic and/
or anti-myocardial hypertrophy, and also attenuating vascu-
lar dysfunction related to metabolic syndrome [185, 186]. 
A balanced RAS activation is one of the cornerstones of the 
haemodynamic regulation during pregnancy, while contrib-
uting to maintain a normal, or even decreased blood pres-
sure, in a progressive increasing volaemia [187]. In normal 
pregnancy, estrogenic influence induces a shift in metabolic 
pathways of angiotensin peptides in a tissue-specific manner. 
A physiological enhancement of ACE2 increases the expres-
sion of the vasodilator Ang (1–7) [188–190]; this effect 
counteracts the elevation of tissue and circulating Ang II 
levels leading to a vasoconstrictor effect, while amplifying 
a vasodilator component [191].

The vasodilator actions of Ang (1–7) have not only been 
reported in vascular beds of systemic maternal circulation, 
but in feto-maternal interface, thereby releasing nitric oxide, 
kinins, and prostaglandins [192].Studies in both human 
and mice models have demonstrated a wide and dynamic 
expression of RAS effectors in maternal–fetal interface. 
In early gestation, pro-renin receptor and the AngII type 1 
receptor (AT1R) have been localized in extravillous tropho-
blast cells, suggesting a balancing role in trophoblast migra-
tion [192–194], while correlating with a high expression of 
VEGF [194]. These findings, along with the expression of 
ACE2 in syncytiotrophoblasts and Ang 1–7 releasing into 
the fetal-maternal vascular endothelium, targeting maternal, 
placental and foetal vessels in a dynamic process throughout 
pregnancy, suggest that the RAS regulation pathway to be 
likely important in both placental angiogenesis and main-
tained maternal vascular tone [194–196].

All RAS components, both systemic and tissue-based 
(renal and uteroplacental) are involved in hypertensive 
disorders during pregnancy [197]. A dysregulation of sys-
temic and renal RAS, results in cardiovascular dysfunction 
and electrolyte imbalance as well as variable PE syndrome 
showing hypertension, o edema and proteinuria [197, 198]. 
In abnormal placentation, the situation is aggravated due 
to the hypersecretion of RAS proteins/angiotensin (Ang) 
peptides, particles, and RAS mRNAs of the ischaemic and 
undeperfused placenta [196, 197]. In addition, an underlying 
autoimmune/alloimmune phenomena have been described 
through autoantibodies like  AT1R-AAs, that emulate Ang II 
actions, thus increasing inflammation and vasoconstriction 
[199]. Animal models have shown that  AT1R-AAs increase 
sensitivity to AngII and are able to activate complement 
C3aR pathways that release antiangiogenic factors, such as 
sFlt-1 [174, 199] that increase placental oxidative stress, 
endothelial dysfunction, vascular reactivity, and angiogenic 

imbalance. All these phenomena are the primary mecha-
nisms in placental related diseases, like early and severe PE, 
and IUGR [173, 200]. RAS peptides and  AT1R-AAs were 
only seen if clinical PE was present (late-onset hypertension 
and proteinuria), but not in early stages of the disease, sug-
gesting a later- clinical role of RAS imbalance, rather than 
an early-genesis role of PE [201].

Hypothesized role of ACE2 and RAS in COVID‐19 
pregnancies

Differences in ACE2 expression could correlate with a dif-
ferent susceptibility to SARS‐CoV-1 infection [202], and 
therefore, to SARS-CoV-2 displaying COVID-19 in different 
forms of severity. The expression levels of ACE2/TMPRSS2 
among fetal-maternal interface, may vary among pregnancy 
[203]. SARS-CoV-2 could trigger RAS dysfunctions when 
ACE2 binds during pregnancy, causing variable organ inju-
ries [204–207] -as seen in other adult patients-, as well as in 
placenta, due to systemic haemodynamic disturbances. This 
occurs not only in the mother, but also in the fetus [165], 
since ACE2 is expressed in fetal endothelial cells and fetal 
organs too. ACE 2 is present in the fetal heart, liver and 
lungs, but not in the kidneys. This fact could explain the 
observation that SARS-CoV-2 is not excreted in urine, and 
thus, unable to detect viral RNA in amniotic fluid [54, 208].

SARS-CoV-2 induced downregulation and shedding of 
ACE2 reducing Ang 1–7, could have a non-despicable role 
in some trophoblast/placental or haemodynamic-related 
obstetric complications such as miscarriage or PE, respec-
tively. While some studies reported a higher incidence of 
miscarriage and PE among COVID-19 pregnant women 
compared to the general population [54, 64, 209], others 
concluded that there is not an increased risk of obstetric 
complications [173, 200]. Generally, on the basis of current 
data, many authors argue with weak evidence of a causal 
association between SARS-CoV-2 infection and obstetric 
complications, stating that further investigations are needed. 
Hypertension, kidney disease, thrombocytopenia or liver 
injury are frequently seen in moderate to severe COVID19 
cases [205, 206, 210, 211]. If they occur during pregnancy, 
patients could fulfill complete or incomplete clinical and/or 
laboratory PE or HELLP syndrome criteria [71]. To make a 
true diagnosis, deeper investigation should be executed, and 
thus, an appropriate care management [71, 200, 212, 213].
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Role of natriuretic peptides B‐type natriuretic 
peptide (BNP) and its N‐terminal fragment (NT‐
proBNP)

Role of NT‑proBNP in COVID‑19

B‐type natriuretic peptide (BNP) and its N‐terminal frag-
ment (NT‐proBNP) are natural inhibitors of RAS and the 
sympathetic nervous system (SNS). The main, but not only 
source of BNP, is ventricular myocardium. BNP is synthe-
sized as a prehormone (proBNP) cleaved in circulation into 
the active BNP, and the inactive NT‐proBNP [214]. The 
main stimulus for increased BNP and NT‐proBNP is myo-
cardial wall stress, as a result of an adaptive mechanism to 
cardiac walls elongation after variations of haemodynamic 
parameters, to prevent cardiac insufficiency. The physiologi-
cal effects of BNP are manifold and comprise natriuresis/
diuresis and induce peripheral vasodilatation. NT‐proBNP 
has a greater half-life with higher serum values, and thus, 
becomes a better marker for any relevant cardiac overload in 
chronic heart failure. Between 8–28% of COVID-19 patients 
show evidence of cardiac injury with elevated troponin and 
natriuretic peptides [204, 215]. Some data support NT-
proBNP as an independent risk factor for in-hospital death 
in patients with severe COVID-19 disease [216]. The predic-
tive value of increased BNP and NT-proBNP in plasma was 
already recognized as cardiovascular endpoints in patients 
and all-cause death in the general population [217].

NT‑proBNP in pregnancy and in COVID‑19 pregnancies

Corin,- the type II transmembrane serine protease enzyme 
that is in charge of cleaving with proBNP in BNP and NT-
proBNP-, has been expressed mainly in the heart and in 
the pregnant uterus [218]. In mice models, both delayed 
trophoblast invasion and impaired spiral artery remod-
eling, as well as high blood pressure and proteinuria, were 
found in pregnant rats lacking corin. There is an associa-
tion of NT- proBNP levels with RAS component levels in 
pregnant women [219]. Some studies have focused on the 
increased circulating levels of natriuretic peptides in preg-
nant women suffering from PE, mainly in its early and severe 
form [219–221]. PE involves a failure of the maternal car-
diovascular system to adapt to the demands of pregnancy, 
therefore a cardiac origin of NT-proNBP was first attrib-
uted. Considering that PE is mainly a placental mediated 
disease, in which an inflamed and undeperfused placenta 
release diverse antiangiogenic factors into the maternal cir-
culation (sFlt1, soluble Endoglin (sENG) [173, 200], the 
hypothesis of a partial placental origin of the elevated levels 
of BNP/ NT-proBNP was first suspected, and further con-
firmed, when NT-proBNP protein was observed in maternal 
spiral arteries and in syncytiotrophoblasts, in preeclamptic 

placental samples [222]. Interestingly, some antiangiogenic 
factors present in women with PE have also been observed 
in non-pregnant women suffering from myocardial diseases 
[175]. Many authors, therefore, have studied the potential 
cardiovascular strain of PE, and its repercussion in cardio-
vascular morbidity and mortality in later life [223, 224]. The 
potential use of natriuretic peptides such as NT-proBNP in 
the assessment of hypertensive pregnancy disorders, is due 
to cardiovascular alterations that have been considered to 
have a non-despicable role in their physiopathology. As PE 
is mainly an angiogenic inflammatory disorder, current evi-
dence supports that NT-proBNP could be useful to assess a 
cardiovascular strain but, on contrary to antiangiogenic fac-
tors (sFlt1, sENG), does not seem to improve the diagnostic 
of PE [225]. Data from severe COVID-19 patients show that 
increased levels of NT-proNBP could be related to cardiac 
and renal injury, and systemic inflammation [175]. The sig-
nificance of increased levels of NT-proBNP in COVID-19 
pregnant patients has not yet been evaluated. Given that, 
higher NT- proBPN levels should be outlined in pregnant 
women, mainly in those affected with moderate-severe 
COVID-19, showing PE or PE like syndrome, to establish 
their role as a current cardiac stress marker, or even as a 
marker for the risk of cardiovascular repercussion later in 
life.

Final remarks

The global strike of the COVID-19 pandemic has challenged 
the scientific community with a struggle to understand the 
complexity of its pathophysiological mechanisms. The 
whole population is susceptible to sicken. Pregnant women, 
however, deserve particular attention. Severe COVID-19 
is mainly an immune-mediated disorder triggered by the 
SARS-CoV-2 infection that, in context of pregnancy could 
bring about several complications. Not only those related 
to lung and multiorganic damage, but also placental injury, 
mainly due to an excessive hyperinflammation and, fre-
quently, hypercoagulation owing to thrombosis. Immune-
thrombosis contains a wide spectrum of pathological mecha-
nisms that have been proven to be involved in the aetiology 
of many placental-related disorders such as RM, PE, IUGR 
or preterm birth. Pathogenetic mechanisms of pregnancy 
complications such as complement activation, release of 
pro-inflammatory cytokines, antigen–antibody abnormal 
responses, prothrombotic phenomena or endothelial-vascu-
lar dysregulation are similar to those involved in immune-
mediated severe forms of COVID-19. Given that SARS-
CoV-2 has come to stay, obstetricians and immunologists, as 
well as all medical specialists, should be encouraged to keep 
collecting disease outcomes in the context of pregnancy, to 
elucidate the potential harmful responses to SARS-CoV-2 
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and /or other coronavirus infections, as well as research on 
actual bidirectional interactions between COVID-19 and 
pregnancy, that can interfere with their respective outcomes.
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